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Abstract Pleiotropy has played an important role in

understanding quantitative traits. However, the extensive-

ness of this effect in the genome and its consequences for

plant improvement have not been fully elucidated. The aim

of this study was to identify pleiotropic quantitative trait

loci (QTLs) in maize using Bayesian multiple interval

mapping. Additionally, we sought to obtain a better

understanding of the inheritance, extent and distribution of

pleiotropic effects of several components in maize pro-

duction. The design III procedure was used from a popu-

lation derived from the cross of the inbred lines L-14-04B

and L-08-05F. Two hundred and fifty plants were geno-

typed with 177 microsatellite markers and backcrossed to

both parents giving rise to 500 backcrossed progenies,

which were evaluated in six environments for grain yield

and its components. The results of this study suggest that

mapping isolated traits limits our understanding of the

genetic architecture of quantitative traits. This architecture

can be better understood by using pleiotropic networks that

facilitate the visualization of the complexity of quantitative

inheritance, and this characterization will help to develop

new selection strategies. It was also possible to confront the

idea that it is feasible to identify QTLs for complex traits

such as grain yield, as pleiotropy acts prominently on its

subtraits and as this ‘‘trait’’ can be broken down and pre-

dicted almost completely by the QTLs of its components.

Additionally, pleiotropic QTLs do not necessarily signify

pleiotropy of allelic interactions, and this indicates that the

pervasive pleiotropy does not limit the genetic adaptability

of plants.

Introduction

Understanding the genetic architecture of complex traits

remains a great challenge for geneticists. Phenomena such

as epistasis, pleiotropy and heterosis make understanding

the genetic control of quantitative traits extremely com-

plex, a veritable black box. Recent studies have sought to

shed light on these phenomena (Melchinger et al. 2007;

Flint and Mackay 2009; Stearns 2010). However, dissect-

ing these elements is only possible using complex molec-

ular techniques and sophisticated statistical models.

One of these highly complex architectural elements is

pleiotropy. Understanding pleiotropy is important for plant

breeding because pleiotropy helps link genetic correlations

to economically and agriculturally important traits that can

also be observed through linkage disequilibrium. However,

the correlations obtained from linkage disequilibrium are

temporary, and the rate at which the disequilibrium dissi-

pates depends primarily on the distance between the genes.

In contrast, because pleiotropy is a phenomenon where the

same locus controls different traits, its effect is more stable.
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Therefore, the identification of pleiotropic quantitative trait

loci (QTLs) is important. To successfully perform multi-

trait selections and breeding strategies, distinguishing

between genetic correlations that arise from the effects of

linkage and correlations that originate from pleiotropic

genes is essential. The phenomena that are involved in the

architecture of pleiotropic genes also need further charac-

terization (Flint and Mackay 2009; Mackay et al. 2009).

The distribution of pleiotropic framework across the

genome is, until now, unknown. In the ‘‘universal pleiot-

ropy’’ hypothesis, all of the genes affect (at high or low

intensity) all of the traits that constitute an individual, and a

mutation at a locus potentially affects (directly or indi-

rectly) the whole phenotype of the individual (Wright

1968). In the universal pleiotropy hypothesis, there is not a

specific gene ‘‘for’’ a trait but rather an extremely complex

network where all genes contribute with differing magni-

tudes to the trait in question. In the context of the universal

hypothesis, the identification of QTLs ‘‘for’’ a given trait is

misleading (Buchanan et al. 2009; Mackay et al. 2009).

Although this hypothesis is still supported by some authors

(Carbone et al. 2006; Buchanan et al. 2009; Mackay et al.

2009), this phenomenon has not been commonly observed

in recent studies where ‘‘modular pleiotropy’’ has been

observed (Wagner et al. 2008; Su et al. 2010; Wagner and

Zhang 2011). Modular pleiotropy is restricted to a defined

group of genes that control particular traits, rather than all

characteristics of an individual.

In addition to the current understanding of the function

and distribution of pleiotropic genes, there is evidence to

suggest that epistasis also shows a correlation between

traits (Pleiotropic epistasis: Wolf et al. 2005, 2006). In

addition, epistasis between loci can influence the pleio-

tropic effects of an individual locus (differential epistasis:

Cheverud et al. 2004; Pavlicev et al. 2008). These authors

raise the possibility that pleiotropy could be greatly influ-

enced by epistasis, which means that there is no certainty

whether pleiotropic genes can induce stable covariances

under any circumstance. The magnitude of this effect can

be variable when different epistatic interactions occur

between loci that affect multiple traits (Mackay et al.

2009).

Taking the above information together, we suggest that

pleiotropy is an extremely complex phenomenon and has a

fundamental role in defining the genetic outcomes in all

species. In the field of genetic improvement, few studies

have paid sufficient attention to this phenomenon, and

when they do, they do not account for the diverse impli-

cations of pleiotropy on the improvement process. In the

context of selecting for multiple traits, pleiotropy is often

ascribed a limited role in relation to genetic correlation,

where one seeks merely to distinguish it from the effects of

linkage between loci, which is a temporary event.

Therefore, in addition to distinguishing pleiotropy from

linkage, it is necessary to also verify the extent of this

effect across the genome for various traits to better

understand the inheritance of quantitative traits and to

subsequently develop new selection strategies. The iden-

tification and distribution of pleiotropic QTLs across the

genome can be achieved by Bayesian shrinkage multiple

interval analysis (Wang et al. 2005; Xu et al. 2009). This

approach is not restricted by the number of parameters, and

it assumes that QTL must be spaced some distance apart,

depending on the sample size and marker density. It is also

assumed that each QTL possess individual variance forcing

marginal QTLs to values close to zero and that the inclu-

sion of these marginal QTLs in the model has little effect

on other intervals. Conversely, QTLs with outstanding

effects tend to show a variance that is negligibly penalized

by the model error. These properties describe Bayesian

shrinkage analysis (Wang et al. 2005). Other Bayesian

multi-trait and multiple interval approaches such as com-

posite model space, using the so-called Stochastic Source

Variable Selection SSVS (George and McCulloch 1993),

are also suggested to depict the genetic architecture of

pleiotropic QTLs (Banerjee et al. 2008). In Bayesian

shrinkage analysis, the magnitude of the QTL effects are

conditional on its variance or its heritability while SSVS

uses binary variables that determine if a putative QTL

effect may or not be shrunk to zero.

Although Bayesian shrinkage analysis appears to violate

the principle of model parsimony, it is the most represen-

tative of the possible architectures of an oligogenic/poly-

genic trait where key genes have a moderate to large

influence on a trait and when combined with various other

genes with small effects may determine the genetic varia-

tion of a quantitative trait (Mackay 2001; Flint and Mackay

2009). Thus, it is important to maintain QTLs with negli-

gible effects in the model, for they can perform an

important role in the genetic variance of a trait (Wang et al.

2005).

In this study, we mapped multiple traits using a

Bayesian approach to identify pleiotropic QTLs related to

grain yield and its components in maize. In addition, we

sought to obtain a better understanding of the inheritance,

extent and distribution of the pleiotropic effects related to

these traits.

Materials and methods

Genetic material

To obtain the F2 population, two inbred lines genetically

divergent for several traits were crossed (L-14-04 B and

L-08-05F). These lines belong to different heterotic groups:
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L-14-04 B was derived from the BR-106 population (yel-

low dent kernels) and L-08-05 F from the IG-1 population

(flint and orange kernels). The BR-106 population was

developed at EMBRAPA Maize and Sorghum Research

Center and the IG-1 population was developed from the

ESALQ/USP Department of Genetics by crossing Brazilian

and Thai populations.

Two hundred and fifty progenies from the F2 generation

were self-fertilized to yield the F2:3 progenies. These

progenies were backcrossed to the L-14-04 B parental line

to create the RC1 progenies and also backcrossed to L-08-

05 F to create the RC2 progenies. These crosses were

performed in isolated, detasseled blocks and yielded 500

backcross progenies following the Design III procedure.

Experimental procedures

The 500 backcrossed progenies were evaluated in six

environments with two replications per environments. The

experimental design was 10 9 10 lattices, and in each

lattice 50 pairs of progenies backcrossed to the two

parental inbreds were allocated; then there were five lat-

tices per environment. In all environments, the experiments

and their replications were randomized within the experi-

mental area. Each row in the plots was 4.0 m long, spaced

0.8 m between rows, and they were overplanted and thin-

ned to 20 plants plot-1 (62,500 plants ha-1). Data for grain

yield (kg plot-1) adjusted to 15 % grain moisture and to

average stand (GY), ear diameter (ED) (cm ear-1), ear

length (cm ear-1) (EL), kernel row number (number ear-1)

(NKR), and row number per ear (number ear-1) (NR) were

recorded in all environments. Except GY, the other traits

were recorded in five plants plot-1 and the plot means were

used for the analyses. A complete description of experi-

mental procedures can be obtained in Aguiar (2003)—PhD

Thesis—data not published.

Genetic map

The genetic map and mapping procedure used to obtain it

were previously described by Sibov et al. (2003). The

molecular analysis was performed at CEBEMEG/Uni-

camp. Briefly, the F2 plants that generated the F2:3 proge-

nies were genotyped using microsatellite markers. The

genetic map was developed using the program MAP-

MAKER/EXP version 3.0b (Lincoln et al. 1992) with a

LOD of 3.0 and a maximum distance between adjacent

markers of 50 cM to form the linkage groups. Sixty new

microsatellite markers were added to the Sibov et al.

(2003) map, resulting in a total of 177 markers distributed

across the 10 maize chromosomes. The genetic map cov-

ered 2,052 cM of the maize genome, with an average

distance of 11.6 cM between markers.

QTL analysis

The Bayesian analysis of multiple intervals and traits was

adapted from Xu et al. (2009) for Design III. In this

approach, it is assumed that each interval contains a

potential QTL that produces random effects and individual

variance. The data obtained in this method are the markers

(m) and the phenotype (y). The unobserved variables are

the QTL genotypes (x and w), their effects (a and d), the

additive, dominant and residual (co)variance matrices

ðAk;Dk and RÞ and QTL position ðkÞ.
Therefore, utilizing the phenotypic averages obtained

from the analysis groups in six environments and the 177

microsatellite markers, we adopted the following linear

model:

yij ¼ bj þ
Xp

k¼1

xijkak þ
Xp

k¼1

wijkdk þ ei ð1Þ

where yij is the vector of the phenotypic observations in the

ith progeny in the jth backcross ½y1ij. . .yqij�T ; q is the

number of traits evaluated; bj ¼ ½b1j. . .bqj�T is the vector of

the population averages for the trait q in the jth backcross;

and ak ¼ ½a1k. . .aqk�T and dk ¼ ½d1k. . .dqk�T are the additive

and dominant effects, respectively, for the kth locus. The

residual is a vector q x 1 assumed to be multivariate normal

MVN(0, RÞ; where R is a q 9 q matrix. The variables xijk

and wijk were obtained from the F? metric and were

therefore orthogonal and similar to the F2 metric when the

epistatic effects are not adjusted for in the model (Yang

2004; Zeng et al. 2005). Thus, we obtain the following:

xijk ¼
1 if QQ
0 if Qq
�1 if qq

8
<

: and wijk ¼
0 if QQ
1 if Qq
0 if qq

8
<

: ð2Þ

The variables xijk and wijk are not observed but can be

inferred from the genotype information of the markers

flanking the QTL. This model (1) is clearly a pleiotropic

model and describes only one QTL simultaneously

affecting two or more traits with one QTL per interval

and defined variances–covariances matrices.

Likelihood function

To simplify, the following vector equivalence will be used:

y = yij, b = bj, x = xij and w = wij. Under the assumption

of normality of the residuals, one can assume that the

conditional probability of y is the following:

pðyjb; a; d; x;w;RÞ ¼ Nðl;RÞ

l ¼
Xp

k¼1

xkak þ
Xp

k¼1

wikdk

ð3Þ
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Thus, the likelihood function is given by:

pðyjk; b; a; d; x;w;R; Þ / R� Ij j�1=2

x exp � 1

2
ðy� lÞðR� IÞ�1ðy� lÞ

� �
ð4Þ

The parameters set is: h ¼ k; b; a; d;R;Ak;Dkf g: The

number of QTLs is usually considered a parameter of

interest in classical mapping, but in Bayesian shrinkage

analysis, the number of QTLs is a constant that is

dependent on the number of markers or intervals. If an

interval does not contain a QTL, its value shrinks to zero,

which is equivalent to a QTL being excluded from the

model.

A priori distribution

Each parameter of the model possesses an a priori distri-

bution. Therefore, pðbÞ / 1; pðakÞ / Nð0;AkÞ; pðdkÞ /
Nð0;DkÞ: The additive (Ak) and dominant (Dk) variance

and covariance matrices have the dimensions q x q. These

matrices have values that vary for different loci and dem-

onstrate a specific effect. The prior distribution of these

matrices follows an inverted Wishart distribution and can

be represented by pðAkÞ ¼ inv�Wishartðs;CÞ and

pðDkÞ ¼ inv�Wishartðs;CÞ with s [ q and C[ 0. In this

work, minimum values were assumed for the hyperpa-

rameters in order to prevent a bias in the a posteriori

inference (Xu et al. 2009). For the residual matrix ðRÞ; the

same priori pðRÞ ¼ inv�Wishartðs;CÞ is assumed, and in

this case, due to the number of degrees of freedom con-

tained in the data, the hyperparameters will have little

influence on the estimated values of R: The prior distri-

bution relative to the QTL position may be uniform. In

other words, given that we assume that ML
k and MR

k are two

markers that flank the genotype of the QTL Qk and that

Lk and Uk are the distances between ML
k $ Qk and Qk $

MR
k ; respectively, a uniform prior for each interval is given

by a group of ordered numbers of the same probability and

that vary from [Lk to Uk].

Thus, the group a priori distribution is:

pðhÞ ¼ pðbÞpðRÞ
Yp

k¼1

pðkkÞpðakÞpðdkÞpðAkÞpðDkÞ ð5Þ

A posteriori distribution

The posterior distribution of the join parameters is given

by:

pðh; x;wjyÞ / pðyjb; a; d; x;w;RÞpðx;wjkÞpðhÞ ð6Þ

where pðx;wjkÞ is the probability of the genotype of the

QTL, given its position.

Although it is difficult to obtain an analytic solution

with this distribution, the Monte Carlo Markov Chain

(MCMC) method can be used to obtain samples of the joint

posterior distribution. To facilitate the sampling process,

each parameter is sampled individually, and the sampling

is dependent on all of the other parameters. If the condi-

tional probability distribution of the parameters has an

explicit form, the Gibbs sampler can be applied, removing

samples directly from known distributions. The conditional

distributions of the parameters are given below.

The conditional posterior distribution of the population

averages from the two backcrosses is multivariate normal

with the mean and variance given by:

bj ¼
1

nj

Xnj

i¼1

ðyij � lÞ ð7Þ

and

var(bjÞ ¼
1

nj

� �
R ð8Þ

Thus, a distinct mean is assumed for each backcross.

The conditional posterior distribution of the additive

effects (ak) is multivariate normal with the following mean

and variance:

ak ¼
X2

j¼1

Xn

i¼1

x2
ijkR

�1 þ A�1
k

 !�1

X2

j¼1

Xn

i¼1

x2
ijkR

�1 yij � bj �
Xp

k0 6¼k

xijk0ak0 �
Xp

k¼1

wijkdk

 !
ð9Þ

and

varðakÞ ¼
X2

j¼1

Xn

i¼1

x2
ijkR

�1 þ A�1
k

 !�1

ð10Þ

Similarly, the conditional posterior distribution for

dominance effects is multivariate normal with the

following mean and variance:

dk ¼
X2

j¼1

Xn

i¼1

w2
ijkR

�1 þ D�1
k

 !�1

X2

j¼1

Xn

i¼1

w2
ijkR

�1 yij � bj �
Xp

k¼1

xijkak �
Xp

k0 6¼k

wijk0dk0

 !

ð11Þ

and

varðdkÞ ¼
X2

j¼1

Xn

i¼1

x2
ijkR

�1 þ D�1
k

 !�1

ð12Þ

The a priori (co)variances matrices are conjugated, thus

yielding the following posterior conditionals of Ak and Dk:
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pðAkj. . .Þ ¼ Inv�Wishartðsþ 1;Cþ akaT
k Þ ð13Þ

pðDkj. . .Þ ¼ Inv�Wishartðsþ 1;Cþ dkdT
k Þ ð14Þ

Similarly, the a posteriori conditional of the residual

(co)variance matrix is:

pðRj. . .Þ ¼ Inv�Wishartðsþ n;Cþ SSÞ ð15Þ

where

SS ¼
Xn

i¼1

yij � bj �
Xp

k¼1

xijkak �
Xp

k¼1

wijk0dk0

 !

yij � bj �
Xp

k¼1

xijkak �
Xp

k¼1

wijk0dk0

 !T

ð16Þ

Design III

In Design III, each backcross creates a distinct population.

Although the backcrosses are analyzed together, the con-

ditional probability of the QTL genotype based on the

markers is obtained for each population separately

(Table 1). Assuming the equation given in (2) and con-

sidering g = (1, 0, -1) for xijk and h = (0, 1, 0) for wijk,

the posterior conditional probability for the QTL genotype

is calculated utilizing the Bayes theorem as follows:

where pðxijk ¼ gzÞ is the prior probability of the QTL

genotype given the expected segregation of the backcross.

As an example, pðxijk ¼ g1Þ ¼ pðxijk ¼ g2Þ ¼ 1
2

for RC1

and pðxijk ¼ g2Þ ¼ pðxijk ¼ g3Þ ¼ 1
2

for RC2. The variables

HkLðg;mlÞ and HkRðg;mRÞ are the matrices for the transi-

tion between the markers ML
k and MR

k and the QTL Qk.

These 3 9 2 matrices are constructed based on the condi-

tional probabilities expressed in Table 1, and the condi-

tional probability of the interval is given by the Kronecker

product of HkLðg;mlÞ and HkRðg;mRÞ, resulting in a mod-

ified 9 9 2 matrix.

The full conditional distribution for parameter k does not

have a closed form and Metropolis–Hastings algorithm

(Metropolis et al. 1953; Hastings 1970) should be used for

sampling. This algorithm makes use of an auxiliary sampling

function and candidate values are accepted with probability a.

A uniform distribution was used to generate samples to each

interval [maxðkj�1; kj � dÞ; minðkjþ1; kj þ dÞ], where d is a

tuning parameter for the interval j, normally fixed between 1

and 2 cM. This function is denoted by uðk�; kÞ; and the new

position will be accepted in the kth iteration with of proba-

bility minð1; aÞ; where a is given by:

a ¼
pðk�j jy; b; x;w; a; d;RÞuðk

�
j ; kjÞ

pðk0
j jy; b; x;w; a; d;RÞuðkj; k

�
j Þ

ð18Þ

Finally, the lost genotypes of the markers are sampled

from their posterior conditional distribution, which can be

calculated using the Bayes theorem:

pðmijk ¼ gzj. . .Þ

¼ pðmijk ¼ gzÞMk�1ðgz;mk�1ÞMkþ1ðgz;mkþ1ÞP3
z¼1 pðmijk ¼ gzÞMk�1ðgz; xk�1ÞMkþ1ðgz; xkþ1Þ

ð19Þ

where pðmijk ¼ g1Þ ¼ pðmijk ¼ g3Þ ¼ 1
4

and pðmijk ¼ g2Þ ¼
1
2

and Mk-1 and Mk?1 are the matrices for the genotypes of

the markers that flank the lost marker and their distances.

These expressions clearly show that the markers follow

an F2 segregation pattern, whereas QTLs segregate fol-

lowing the expected segregation of the backcross popula-

tions. These observations suggest that the prediction of the

lost marker based on the QTL genotypes becomes tedious

and requires matrices that describe the probabilities of the

two backcrosses. Thus, the high density of the utilized

markers limits the effects that are predicted by lost markers

based on flanking markers.

Post-MCMC analysis

The QTL position was described following (Yang and Xu

2007). The conditional posterior for the position f ðkÞ was

weighted by the quadratic effect of the QTL tðkÞ. Thus, the

profile of these quadratic effects weighted by their fre-

quencies in the posterior distribution is given by gðkÞ ¼

Table 1 Conditional probability of segregation of a QTL with the

adjacent marker (M)

RC1 RC2

Q1Q1 Q1Q2 Q2Q2 Q1Q1 Q1Q2 Q2Q2

M1M1 (1 - r) r 0 0 (1 - r) r

M1M2 1/2 1/2 0 0 1/2 1/2

M2M2 r (1 - r) 0 0 r (1 - r)

The conditional probability of the interval is given by the Kronecker

product of the backcross matrices (RC1 � RC1 e RC2 � RC2)

pðxijk ¼ gzj. . .Þ ¼ pðxijk ¼ gzÞHkLðgz;mlÞHkRðgz;mRÞpðyijjbj; ak; dk; xijk;wijk;RÞP3
z¼1 pðxijk ¼ gzÞHkLðgz;mlÞHkRðgz;mRÞpðyijjbj; ak; dk; xijk;wijk;RÞ

ð17Þ
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WðkÞf ðkÞ; where WðkÞ ¼ aTV�1
a aþ dT V�1

d d follows a v2

distribution with two degrees of freedom and V�1
a and V�1

d

are the inverses of the variances of the QTL effects given in

(10, 12).

Pleiotropy versus linkage

The pleiotropy versus linkage test can be performed by

comparing the original pleiotropy model (modelplei.) with

the linkage model (modellink.) using the Bayes factor

(Varona et al. 2004; Liu et al. 2007).

BF ¼ pðyjmodpleitropic

pðyjmodlinkage

� �
ð20Þ

where pðyjmod . . . is the probability of the conditional

phenotypic observations relative to all of the other

parameters. The model pðyjmodlinkage can be easily adapted

to the pleiotropy model (1) assuming two or more QTL

positions per interval and a null covariance across traits

(Varona et al. 2004; Liu et al. 2007). During the MCMC

process, pðyjmod . . . was obtained, following which the

BF was calculated, thus resulting in a chain of BF values.

The harmonic mean of this chain corresponds to the

probability of the observations, given the parameters (Liu

et al. 2007; Raftery et al. 2007). The criteria adopted to

infer the most favorable model was given by the log of the

Bayes factor as follows: log(BF) [ 10, decisive in favor of

the pleiotropy model; 10 [ log(BF) [ 5, strong evidence

of pleiotropy; and 5 [ log(BF) [ 0, moderate evidence of

pleiotropy. Negative values for log (BF) provide evidence

that favors the linkage model with the same scale described

for pleiotropy. A detailed derivation of Bayes factor for

linkage and pleiotropic models can be obtained in Varona

et al. (2004). The pleiotropy test was performed in pairs of

two traits, which is equivalent to the decomposition of the

group analysis with five traits.

A study was carried out in order to verify the power of

our method to detect linkage effects as opposed to pleio-

tropic effects. Two correlated traits were simulated pre-

senting one pleiotropic QTL plus two linked QTLs sited in

one linkage group with 15 molecular markers. Average

distance between adjacent markers was 10 cM. Simulated

heritability was 0.5 and population size ranged from 200 to

500 individuals. Results from using our methods were

compared with the analysis suggested by Jiang and Zeng

(1995) using Qgene program (Joehanes and Nelson 2008).

All of the analyses were performed using SAS/IML code.

Distribution of pleiotropic effects

The direction and magnitude of the pleiotropic effects was

represented using a biplot. This biplot was constructed

using a singular value decomposition of a double entry

table with the effects of the QTLs (significant for at least

one trait) over different evaluated traits. This table was

centered on the traits, and the effects were corrected to the

same scale, generating a pattern of QTL interaction mag-

nitudes across traits. The biplot was generated using the

SAS computational package.

The extent of the pleiotropic effects and the identifica-

tion of possible modules were analyzed by bipartite hier-

archy networks (Buchanan et al. 2009; Wang et al. 2010).

The analyses of the networks were performed using the

program Cytoscape v. 2.8.1 (Shannon et al. 2003).

Results

Genetic control of grain yield and yield components

In this study, 27 QTLs that affect the grain yield (GY), the

ear diameter (ED), the ear length (EL), the number of

kernels per row (NKR) and the number of rows per ear

(NR) were identified. Figure 1 shows the distribution of

these 27 QTLs across the genome. QTLs with a large effect

were not identified on chromosomes 4 and 6, but a high

density of QTLs was found on chromosomes 8 and 10. The

sharpest peaks suggest the presence of only one QTL in the

region, whereas the broader peaks suggest linked QTLs,

but with gðkÞ that do not overlap (Fig. 1). In the multiple

interval analysis, the 10 linkage groups were joined to

simulate a chromosome with extensive intervals between

the groups. However, the scale in Fig. 1 is given in cM and

specified for linkage groups.

Upon examining NKR, 13 QTLs were identified, and the

sum of their effects suggests that the trait is completely

dominant (LD = 0.88). However, QTLs with additive

effects (6), partial dominance (3), complete dominance (1)

and overdominance (4) were found by analyzing their

individual effects. A large portion of the QTLs that affect

the NKR (85 %) also had a significant effect on EL, and 14

QTLs were identified that together showed partial domi-

nance. Allelic interaction, or the degree of dominance,

exerted by these QTLs on NKR and EL were very distinct,

and seven additive, six overdominant and only one partially

dominant QTL were found to specifically affect EL. The

posterior distribution of the effects of the QTLs on NKR

and EL is shown in Fig. 2.

The QTLs acting on the number of rows (10) were

nearly identical to those acting on ED (17), with a coin-

cidence rate of 90 %. Contrary to what was observed for

EL and NKR, one can infer that the genetic controls of ED

and NR are virtually additive. A dominant or overdominant

QTL acting on NR was not found, as 60 % of these QTLs

showed additive inheritance and the others exhibited only

partial dominance. Only one overdominant QTL was found
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for ED, and the rest demonstrated additive effects (9) or

were partially dominant (7). The additive inheritance of

these QTLs is shown in Fig. 2, where few dominance peaks

are found in the posterior distribution.

The genetic control of GY demonstrated partial domi-

nance when the sum of the 17 QTLs that act on this trait

were considered together. Generically, the inheritance of

this trait was equivalent to a combination of the effects of

the QTLs present in its components (Fig. 2). In this figure,

it is possible to note that the trend of the additive effects for

grain yield were similar to those observed for ED and NR,

and their dominant effects were similar to those observed

for EL and NKR. Among the 17 QTLs that influence grain

yield, there was an almost equal number of additive effects

(6) and partial dominant (6) and overdominant (5) loci.

These results indicate that the trait GY is a result of mixed

allelic interactions of its components.

Pleiotropy and its distribution

The majority of the QTLs identified in this study (63 %)

had pleiotropic effects. These pleiotropic QTLs were also

the most important for the genetic control of the five traits

we evaluated (Fig. 1). The regions of the genome that have

the highest WðkÞ also show more than one peak above the

critical value. The most important QTLs were the follow-

ing: QTL55, which is located 110.8 cM from the beginning

of chromosome 3 and acts on all five traits, QTL 175,

which is located 140.5 cM from the beginning of chro-

mosome 10 and acts on four traits and QTL 141, which is

located 58.8 cM from the beginning of chromosome 8 and

acts on all five traits.

The comparative analyses between the linkage and

pleiotropy models provide evidence for the pleiotropic

model according to Bayes factor criterion (Table 2). The

reduction of the residual variance in the pleiotropy model

was as much as four times compared to the linkage model

when analyzing the EL and ED traits together. The results

in Table 2 show that it is unlikely that two QTLs that are

very close together act indirectly on the traits, i.e., where

the covariance of traits would just be a function of the

recombination frequency.

Although our results provide evidence in support of

pleiotropic model, the simulation experiments revealed that

close linkage is difficult to sort from pleiotropic effects in

multiple interval mapping, specially on populations in

linkage disequilibrium when the QTLs are in the same

interval (Fig. 1 and 2—Supplementary Materials). On the

other hand, our analysis was more powerful in detecting the

pattern of linked QTLs than conventional multiple interval

mapping (MIM) methods. Two linked QTLs spaced by

11 cM were found on neighborhood of true linked QTLs

spaced by 8 cM. In conventional MIM, these linked QTLs

were described as pleiotropic effects (just one QTL esti-

mated at 68 cM ahead from starting point) and the true

pleiotropic QTL was wrongly estimated as three linked

Fig. 1 Profile of the location of QTLs in the maize genome

(chromosomes 1–10) responsible for grain yield (GY) and its

components, defined by the number of kernels per row (NKR), the

number of rows (NR), the ear length (EL) and the ear diameter (ED).

The horizontal dotted line represents the critical value for the

univariate Wald test ðv2
2;1�0:05 ¼ 5:99Þ
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QTLs at 14, 24 and 26 cM (Fig. 3—Supplementary

Materials). Thus, our pleiotropic model was more powerful

than Jiang and Zeng approach in both detecting pleiotropic

and true linkage patterns, since the simulated pleiotropic

QTL was detected with larger resolution in Bayesian

analysis than in likelihood approach. However, if there are

tightly linked QTL, both methods will be challenged.

The pleiotropic model was efficient in detecting closely

linked QTLs distributed in different intervals. For instance,

at distance of 139.6 cM in the chromosome 10, a signifi-

cative QTL was found for NR, but not for ED. On the other

hand, at 140.2 cM, on the same linkage group, an inverted

situation was obtained (Fig. 1). We suggest that our

framework is useful to sort out patterns of pleiotropy and

linkage in multiple QTLs mapping; although may fail to

distinguish close linkage from pleiotropy in QTLs located

in the same interval (Supplementary Materials).

In Fig. 2, there is a superimposition of the posterior

distributions for EL and NKR, suggesting that there is no

distinction between these traits but rather between mea-

surements of the same trait. Similarly, there was no dis-

tinction between ED and NR in the position and the

direction of the effects of the QTLs (Fig. 2). It is also

evident that GY is a mixture of these four components,

which may suggest, a prior, that QTLs for grain yield are

very restrictive since GY is a function of the QTLs that act

on its subtraits.

Evidence for the pleiotropy model can also be seen in

Fig. 3. In this figure, the pleiotropy model adjusts the

effects of very close QTLs and concentrates these effects in

just one region of the genome and this feature of the model

results in lower residual variance (Table 2). For example,

the two-trait linkage analysis for GY and NR demonstrates

that the first linkage group contains two peaks in neigh-

boring intervals that were later corrected to two peaks

within the same interval in the pleiotropy model (Fig. 3).

The same situation was observed for the traits GY and

NKR, where nearly all of the neighboring peaks in the

linkage model were placed in just one region of the gen-

ome. This pattern repeated itself in all of the comparative

analyses between the linkage and pleiotropy models.

The results of this study suggest that grain yield and

yield components do not possess modules of pleiotropic

genes, or in other words, it was not possible to separate the

QTLs according to their importance and amplitude of

action (Fig. 4b). Although both the 168 and 169 QTLs act

on ED and NR and are located in group 10, they were

outside the module due to their low relative importance,

and specific traits could not be separated by their particular

QTL groups. In this module, we have identified that the

most important QTLs were closely located to the five traits,

and those presenting minor importance were placed at the

edge of the module. This grouping takes both the amplitude

of the action of the QTL and its magnitude into consider-

ation. Figure 4a shows a hierarchical network where the

QTLs were grouped based on the magnitude of their

influence on the traits (but not their amplitude) and where

the traits were grouped based on the influence of these

QTLs. In this case, the QTLs located most closely to the

traits are those with a lower average influence, and those

more distant are the QTLs with greater influence, not

accounting for the amplitude of their action. This hierar-

chical system also suggests that the genetic control of these

five traits is extremely complex and that pleiotropy is very

dispersed. It also suggests that EL and NKR are highly

correlated, as are ED and NR.

The high correlation between the five traits can also be

observed through the use of biplots, where the normalized

effects of the 27 QTLs on the five traits were decomposed

into the principal components. Figure 5 depicts a group of

QTLs that controls EL and NKR and another group that

controls ED and NR. In addition, these groups have effects

with opposing signals. The QTLs with low additive plei-

otropy are found near the coordinates (0,0) in the biplot.

It is also possible to estimate the additive genetic cor-

relation between the traits from Fig. 5 by taking the cosine

of the lesser angle between the vectors for EL, ED, PROD,

NR and NKR. The correlation was estimated from the

biplot and was representative of the values obtained by

variance components (Table 3—Aguiar 2003—PhD The-

sis—data not published). For example, the correlation

between ED and NR in the biplot was 0.982 and was 0.63

via variance components (VC). The correlation between

EL and NKR was 0.72 in the biplot and was 0.46 via CV.

The trait with the largest additive correlation with GY was

ED (0.89 via biplot and 0.52 via CV) and the lowest cor-

relation (in scale) was EL (-0.50 via biplot and 0.12 via

CV). This result suggests that the additive biplot illustrates

the importance of pleiotropy in determining the additive

Table 2 Evidence supporting the pleiotropy model obtained from the

logarithm of the Bayes factor, log (BF), against the linkage model

ED EL GY NR NKR

ED 615.61 550.93 453.54 562.22

EL 424.21 453.54 440.32

GY 362.08 552.91

NR 557.01

ED ear diameter, EL ear length, GY grain yield, NR number of rows,

NKR number of kernels per row

Fig. 2 Posterior distribution for additive effects (upper lines) and

dominant effects (lower lines) of the QTLs in the maize genome

(chromosomes 1–10) responsible for the trait grain yield (GY) and its

components defined by number of kernels per row (NKR), number of

rows (NR), ear length (EL) and ear diameter (ED)

b
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genetic correlation between these traits, or in other words,

the 17 pleiotropic QTLs found were highly descriptive of

the genetic correlation estimated by conventional methods

using VC. The heritability of these traits ranged from 0.70

to 0.89 for GY and NR, respectively.

Figure 5 also demonstrates the dominant effects of the

27 QTLs and their importance in the genetic control of GY

and its components. In the additive biplot, GY was more

influenced by the traits ED and NR, but the biplot of the

dominance effects showed that GY was more influenced by

the traits EL and NKR. Additionally, it was observed that

the QTLs with greater dominant relevance were somewhat

distinct from the QTLs with greater additive relevance. As

we know, the parental line with higher grain yield per se

has smaller ears, but a wider diameter and, consequently,

more rows per ears. Thus, QTL evidence suggests that in

Fig. 3 Profile of the QTL location in the maize genome by applying the pleiotropic model (P) and the linkage model (L) for the traits grain yield

(GY), the number of rows per ear (NR) and the number of kernels per row (NKR)
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the hybrid, the allelic interaction and complementation of

the pleiotropic QTLs allows selection to increase ER and

NR. One could, for instance, simultaneously obtain domi-

nant QTLs that increase the EL and NKR. This property

may compensate for the pleiotropic QTLs that have dif-

ferent signs of additive effects across the characters as

shown in Fig. 2. For example, QTL 55 (located in linkage

group 3) has a positive additive effect for NKR and EL and

a negative additive effect for ED and NR, but null domi-

nance effect. This allows for hybrid combinations of con-

trasting lines increasing both characters. Thus, the

pleiotropy of the allelic interactions may minimize the

possible losses from negative correlations from the plei-

otropy of the QTL because the signs of these interactions

are not always the same and the degree of dominance that

the pleiotropic QTLs have over certain traits is also quite

varied.

Discussion

The complexity of the inheritance of quantitative traits has

become an area of intense focus in recent reviews (Mackay

2001; Flint and Mackay 2009; Mackay et al. 2009;

Buchanan et al. 2009; Wagner and Zhang 2011). These

reviews have shown that the ‘‘complexity cost’’ of an

organism is directly linked to the distribution of pleiotropy

in the genome. Our results suggest that the genetic control

of grain yield and its components may be inseparable from

the action of QTLs and that pleiotropy has a fundamental

role in the genetic architecture of these traits. In these

analyses, it was difficult to separate the genetic control of

these five traits based on the action of the QTLs (Figs. 1, 2,

3 and 4). It is apparent from Fig. 2 that grain yield emerges

from the interaction of the QTLs present in ED, EL, NR

and NKR, which may lead to the development of a mul-

tiplicative model acting on these traits (Schnell and

Cockerham 1992).

Schnell and Cockerham (1992) evaluated the possibility

that heterosis is a product of a multiplicative interaction

between subtraits. Because the posterior distribution for

grain yield can be superimposed over the additive distri-

butions of ED and NR and over the dominance distribu-

tions for EL and NKR (Fig. 2) and because pleiotropic

QTLs that act on these traits possess different allelic

interactions (Fig. 5), we can predict the genetic control of

Fig. 4 Hierarchical pleiotropic network (a) and modular analysis (b) of QTLs acting on grain yield (PROD) in maize and its components,

defined as the number of kernels per row (NKR), the number of rows (NR), the ear length (EL) and the ear diameter (ED)
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GY by analyzing the QTLs of its components (Schnell and

Cockerham 1992). For example, if we consider QTL 20

(chromosome 1—first peak in EL and NKR), we can see its

additive specificity on EL and NKR, but a null effect on

ED and NR (Fig. 2). Thus, in the multiplicative model by

Schnell and Cockerham (1992), the prediction of this QTL

would also have a null effect on GY as observed in Fig. 2,

that is, its predicted effect would be QTL20 ¼ lelled þ
aelled þ aelled þ delled þ delled þ aelaed þ delded; where

led ¼ 0; aed ¼ 0; ded ¼ 0e ded ¼ 0. The same prediction

can be made for the behavior of QTL 145 (second peak on

chromosome 8), which had an overdominant effect on EL

and NKR and an additive effect on ED and NR but had a

completely dominant effect on GY. Thus, it is possible to

predict the behavior of the majority of the pleiotropic QTLs

acting on GY but not the behavior of QTLs specifically for

GY. Although four QTLs were found to specifically act on

PROD, this does not mean that they are not related to other

traits that were not evaluated in this study.

The universality of pleiotropic effects is speculated to be

an obstacle for individual adaptation due to the ‘‘cost of

complexity’’ or ‘‘pleiotropic cost,’’ where the adaptive

network can be described in an n-dimensional space

described by the Fisher Geometric Model (Wagner and

Zhang 2011). According to Wagner and Zhang (2011) and

several other authors (Wagner et al. 2008; Su et al. 2010;

Stearns 2010), modular pleiotropy would be favorable from

an adaptive/evolutionary standpoint, whereas universal

pleiotropy would be an obstacle to the process.

From the genetic improvement viewpoint, the division

of GY into modules of pleiotropic genes could facilitate

genetic improvement because changing the modules of

pleiotropic genes to arrive at the ideal genotype would be

easier than changing several pleiotropic QTLs within one

module. It would be similar to putting together a complex

puzzle with part of it pre-assembled. However, our results

show that although there was widely distributed pleiotropy

among the QTLs (but not universally due to the number of

traits studied), the allelic interaction within these QTLs

does not necessarily show strong pleiotropy (Fig. 5). In this

Figure, it is clear that the QTLs that show prevalent

additive pleiotropic effect (QTL 55, QTL 37, QTL 36,

QTL 104, QTL 141, QTL 145 and QTL 140) do not nec-

essarily have prevalent dominant pleiotropy (QTL 175,

QTL 172, QTL 145, QTL 141, QTL 8, QTL 176, QTL 174

and QTL 126). Furthermore, it was shown that QTL 145

had a strong additive effect on ED and NR but significant

dominant control over EL and NKR, suggesting that

pleiotropic QTLs can have different allelic interactions

across traits.

These results suggest that even in widely dispersed

pleiotropy, it is possible to obtain highly productive

hybrids or highly adapted genotypes resulting from the

various pleiotropic effects exerted by the allelic interac-

tions within of the QTLs. These observations are similar to

those described by Carbone et al. (2006), who showed that

the sites in the pleiotropic gene Catsup in Drosophila,

described by their quantitative trait nucleotides (QTNs),

acted independently for some traits. Their results suggested

that mutations in the Catsup gene do not necessarily act

universally across all the traits, and therefore, the allelic

effect of the gene corresponded to varying degrees of

pleiotropy.

Fig. 5 Principal component analysis of additive (a) and dominant

(b) QTL effects on maize grain yield (GY) and its components,

defined as the number of kernels per row (NKR), the number of rows

(NR), the ear length (EL) and the ear diameter (ED)

Table 3 Additive genetic correlation obtained by components of

variance

GY ED EL NR NKR

GY 1.00 0.52 0.12 0.13 0.52

ED 1.00 -0.12 0.63 0.05

EL 1.00 -0.19 0.46

NR 1.00 -0.07

NKR 1.00

Aguiar 2003, unpublished data

ED ear diameter, EL ear length, GY grain yield, NR number of rows,

NKR number of kernels per row
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It is also important to note that in pericentromeric

regions in maize, suppression of the recombination ratio

may occur interfering with the linkage/pleiotropy rela-

tionship (Gore et al. 2009). In addition, it is difficult to

characterize pleiotropic genes in linkage disequilibrium

mapping studies because a quantitative locus can contain

several genes (Mackay et al. 2009). If so, mostly linkage

disequilibrium mapping might fail in detecting close link-

age in genome analysis and thus pleiotropic models might

be favored. We have found in simulation that inconclusive

decision can be obtained based on BF values and eventu-

ally pleiotropy and close linkage can be unraveled

(Fig. 1—Supplementary Materials). This is a function of

sample size, marker density and strength of effects. Fur-

thermore, estimates of strongly linked QTLs localized in

different interval were obtained in our mapping using

pleiotropic model (for instance in chromosome 10).

Another simulation has been carried out using several

approaches and, analyzing initial results, we can infer that

selection of linkage models may be conditional on the

number of phenotyped/genotyped individuals, heritability

of the traits, level of genetic correlation, number of inter-

vals and its length and number of QTLs retained in the

model. However, due to strong genetical relationship

expected between traits in this study (grain yield and its

components) and to the potential of pleiotropic effects to be

more informative than linkage in the models considered,

our results suggest that pleiotropy is prevalent on grain

yield and its components (just 37 % of the QTLs had

linkage). However, further studies adding non-correlated

biological traits such as grain density and plant height may

eventually show prevalence of linkage QTLs.

It should be emphasized that our linkage model did not

account for two pleiotropic QTLs in one interval but two

QTLs with independent effects in an interval. In this case,

our inference about the evidence supporting a pleiotropic

model is limited by the small probability of observing

QTLs that are very near each other and have independent

effects on the traits. Buckler et al. (2009) has tried to

identify pleiotropic and linkage effects from QTLs using

correlation of QTL effects in 25 families. We think as

correlations would be affected by both effects, such type of

studies could be done in advance to access simpler models

(candidate QTL regions) to further detection linkage or

pleiotropic effects.

This study supports the power of Bayesian shrinkage

analysis to describe the genetic architecture of quantitative

traits, as has also been observed by Xu (2003), Wang et al.

(2005) and Xu et al. (2009). However, some authors have

suggested other approaches for mapping multiple traits

(Jiang and Zeng 1995; Weller et al. 1996; Gilbert and Le

Roy 2003; Malosetti et al. 2008; Banerjee et al. 2008).

Some of these methods have large computational

advantages but are not as genetically interpretable as our

approach. Some others are heavily dependent on model

selection or are more computationally intensive.

Recent studies have suggested a joint modeling that

combines multiple traits and multiple environments into

one single model (Malosetti et al. 2008; Van Eeuwijk et al.

2010). These authors consider the QTL effect to be fixed

and the marginal effects of background as random.

Although joint modeling of several environments and traits

is desirable, using simple interval analysis may counter-

balance this possible gain. Additionally, in these approa-

ches, the covariance of the QTLs is confused with the

residual covariance, for both direction and magnitude,

because they do not directly explore the specific (co)vari-

ances of each QTL across the traits. Furthermore, treating

the QTL as fixed appears to contradict the uncertainty

present in the genetic architecture of a complex trait

(Buchanan et al. 2009).

Recent studies have attempted to describe the genetic

control of heterosis by mapping complex traits in maize

(Lu et al. 2003; Frascaroli et al. 2007; Garcia et al. 2008;

Schön et al. 2010). The majority of these studies have

observed a strong dominant/overdominant effect on the

genetic control of heterosis and a marginal effect from

epistasis. Our results suggest that the control of heterosis is

partially dominant but has an equal distribution of QTLs

with additive effects, partial dominance and overdomi-

nance. Although epistasis was not investigated in this work,

the literature shows that it has marginal effects on the

genetic control of heterosis (Garcia et al. 2008; Schön et al.

2010). Two points require further attention: (1) reconciling

epistatic effects only in QTLs with a large effect may not

describe the real contribution of this phenomenon in the

genetic control of heterosis, thus requiring the application

of complex models for the study of the distribution of

epistasis across the genome, and (2) epistasis may not be

trait specific and may be better studied within the concept

of multiple pleiotropic QTLs because these two phenom-

ena (pleiotropy and epistasis) may be inseparable (Schnell

and Cockerham 1992; Cheverud et al. 2004; Wolf et al.

2005; Wolf et al. 2006; Pavlicev et al. 2008; Mackay et al.

2009).

Our results reinforce the discussion raised by Mackay

(2001), Mackay et al. (2009) and Buchanan et al. (2009)

and suggest that the inheritance of traits is limitedly

described if analyzed individually but may be better

understood through pleiotropic networks that allow us to

visualize the complexity of inheritance of quantitative traits

and, from this, develop new selection strategies. It was also

possible to confront the idea that it is possible to identify

QTLs for complex traits such as grain yield, as pleiotropy

acts prominently on its subtraits and as this ‘‘trait’’ can be

broken down and predicted almost completely by the QTLs
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of its components. Furthermore, the pleiotropy of QTLs

does not necessarily describe the pleiotropy of the allelic

interactions, and therefore, the wide distribution of the

pleiotropic effects does not limit the genetic adaptability of

plants.
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